Supersymmetric harmonic maps into symmetric spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Supersymmetric Attractors in Symmetric Coset Spaces

The attractor mechanism for supersymmetric (BPS) black holes was discovered in 1995 [1]: at the horizon of a supersymmetric black hole, the moduli are completely determined by the charges of the black hole, independent of their asymptotic values. In 2005, Sen showed that all extremal black holes, both supersymmetric and non-supersymmetric (non-BPS), exhibit attractor behavior [2]: it is a resul...

متن کامل

Maps into projective spaces

We compute the cohomology of the Picard bundle on the desingularization J̃ d (Y ) of the compactified Jacobian of an irreducible nodal curve Y . We use it to compute the cohomology classes of the Brill–Noether loci in J̃ d (Y ). We show that the moduli space M of morphisms of a fixed degree from Y to a projective space has a smooth compactification. As another application of the cohomology of the...

متن کامل

Harmonic Analysis on Real Reductive Symmetric Spaces

Let G be a reductive group in the Harish-Chandra class e.g. a connected semisimple Lie group with finite center, or the group of real points of a connected reductive algebraic group defined over R. Let σ be an involution of the Lie group G, H an open subgroup of the subgroup of fixed points of σ. One decomposes the elements of L(G/H) with the help of joint eigenfunctions under the algebra of le...

متن کامل

Stable Harmonic 2-spheres in Symmetric Spaces

TO = \ I l̂ l'vol. * J M A harmonic map 0 is said to be stable if the second variation of E at (j> is positive semidefinite. That is: for all smooth variations t)\t=0 > 0. Of particular interest is the case where M is the sphere S and N is a Riemannian symmetric space G/K. In this setting harmonic maps are branched minimal immersions, or the finite ...

متن کامل

Harmonic Morphisms, Hermitian Structures and Symmetric Spaces

[A] M. Svensson, On holomorphic harmonic morphisms, Manuscripta Math. 107 (2002), 1–13. [B] M. Svensson, Harmonic morphisms from even-dimensional hyperbolic spaces, Math. Scand. 92 (2003), 246–260. [C] M. Svensson, Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London Math. Soc. 68 (2003), 781–794. [D] M. Svensson, Harmonic morphisms in Hermitian geometry, J. Reine Angew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2007

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2007.01.005